联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
/> />
姓 名:
朱英杰
性    别:
专家类别:
百人;研究员
学 历:
博士研究生
电 话:
0086-21-52412616
传 真:
0086-21-52413122
电子邮件:
y.j.zhu@mail.sic.ac.cn
个人主页:
http://www.sic.cas.cn/kybm/bio/zyj/jj
邮政编码:
200050
通讯地址:
上海市定西路1295号

简历:

  朱英杰,男,理学博士。现任中国科学院上海硅酸盐研究所研究员、博士研究生导师。1992年于中国科学技术大学获理学硕士学位。1994年于中国科学技术大学获理学博士学位。1994年10月至1997年11月,在中国科学技术大学任讲师和副教授。1997年11月至1998年7月,加拿大Western Ontario大学化学系访问学者。1998年7月至1999年8月,德国柏林Fritz-Haber马普研究所洪堡学者。1999年9月至2001年9月,美国Utah大学化学系博士后。2001年9月至2002年1月,美国Delaware大学化学系博士后。2002年1月入选中国科学院 “引进国外杰出人才(百人计划)”, 2005年在中国科学院 “百人计划”项目终期评估中获得优秀奖。2006 年入选“科学中国人年度人物”。2007 年入选上海市“优秀学科带头人”计划。2007年、2009年和2011年3次获中国科学院上海硅酸盐研究所“优秀导师”奖。2008 年获中国科学院“朱李月华优秀教师”奖。2009 年获上海市自然科学一等奖 (排名第2)。获2014年度中国科学院上海硅酸盐研究所“所长特别奖”和“最快进步奖”。曾 4 次获中国科学院上海硅酸盐研究所“优秀个人”。

  担任Current Nanoscience, Recent Patents on Nanotechnology, The Open Nanoscience Journal, Nanoscience & Nanotechnology-Asia, Journal of Biomaterials and Tissue Engineering, Current Microwave Chemistry六种国际期刊的编委。多次被邀请担任多种国际权威期刊的审稿人,包括 Angew. Chem. Int. Ed., Advanced Materials, Journal of American Chemical Society, Advanced Functional Materials, Small, Chemistry of Materials, Biomaterials, Journal of Physical Chemistry B, Journal of Physical Chemistry C, Crystal Growth & Design, Inorganic Chemistry, Nanoscale等。

  主要研究方向为纳米材料。已发表论文270余篇,其中260余篇被 SCI 收录,影响因子大于 3.0的SCI 论文有120余篇,包括Chemical Reviews论文(影响因子46.568)。发表的论文已被引用约8000次,引用次数超过100次的论文有12篇,单篇最高被引430次。入选Elsevier 发布的2014年中国高被引学者榜(Most Cited Chinese Researchers)。被邀请为 Springer-Verlag , CRC, Nova, USTC 出版社英文专著各撰写一章。有关微波辅助离子液体法快速制备纳米材料的论文发表在 Angew. Chem. Int. Ed., 43, 1410 (2004) (影响因子11.261)上,该论文受到审稿人高度评价,入选“热点论文” (Hot Paper)和“高引用论文(Highly cited paper)”,2004年发表后单篇论文已被引用430次。发表在Journal of Physical Chemistry B, 109, 4361 (2005) (影响因子3.302)上的论文入选美国化学会 2005 年 1-6 月“访问次数最多的论文 (Most-Accessed Article)”,已被引用 154 次。 发表在Journal of Physical Chemistry B, 110, 8593 (2006) 的论文入选美国化学会 2006 年 4-6 月“访问次数最多的论文”。 另外,发表在Advanced Functional Materials 17, 59 (2007) (影响因子11.805)已被引用249次。发表在 Nanotechnology, 17, 645 (2006) (影响因子3.821)的论文发表不久网上下载次数高居英国物理学会 (IOP) 所有期刊论文的前10 %。 发表在 Journal of Solid State Chemistry 179, 1225 (2006) 的论文入选 2006 年下载次数最多的前 50 位论文。发表在CrystEngComm 13, 5162 (2011) (影响因子4.034)的论文入选2011年7月网上被阅读次数最多的前10篇论文(排名第二)。发表在Journal of Physical Chemistry B, 108, 3488 (2004) (影响因子3.302)的论文已被引用231次。申请发明专利 46项,获 40项发明专利授权。

  在人才培养方面,已培养博士后1人,博士19人,硕士4人,另有1名博士后和多名研究生在读。培养的研究生荣获多项荣誉奖励,包括3人次荣获“国家奖学金”; 2人荣获 “中国科学院院长优秀奖” ;1人荣获 “中国科学院王宽诚博士后工作奖励基金”;1人荣获“中国科学院大学优秀毕业生”;4人荣获 “上海市高等学校优秀毕业生”;1人荣获 “上海市研究生优秀成果(学位论文)”奖 ;1人荣获 “中国科学院朱李月华优秀博士生“奖 ;12人次荣获 “中国科学院研究生院三好学生”;1人荣获 “上海-联合利华研究生奖学金”;1人荣获 “宝钢优秀学生奖”;9人荣获 “严东生奖学金”,其中1人获 “严东生奖学金特等奖”。 

  代表性论文:

  1. Ying-Jie Zhu*, Feng Chen. Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase. Chemical Reviews 114: 6462-6555 (2014). (影响因子 46.568,被引次数78)
  2. Bing-Qiang Lu, Ying-Jie Zhu*, Feng Chen. Highly Flexible and Noninflammable Inorganic Hydroxyapatite Paper. Chemistry-A European Journal, 2014, 20: 1242-1246. (影响因子 5.731)
  3. Bing-Qiang Lu, Ying-Jie Zhu*, Feng Chen, Chao Qi, Xin-Yu Zhao, and Jing Zhao. Solvothermal Transformation of a Calcium Oleate Precursor into Large-Sized Highly Ordered Arrays of Ultralong Hydroxyapatite Microtubes. Chemistry-A European Journal, 2014, 20: 7116-7121. (影响因子 5.731)
  4. Ying-Jie Zhu*, Wei-Wei Wang, Rui-Juan Qi, Xian-Luo Hu. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie-International Edition, 43, 1410-1414 (2004). (影响因子11.261, 被引次数430)
  5. Hua Tong, Ying-Jie Zhu*, Li-Xia Yang, Liang Li, Ling Zhang. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature. Angewandte Chemie-International Edition, 45 (46), 7739-7742 (2006). (影响因子11.261, 被引次数104)
  6. Wei-Wei Wang, Ying-Jie Zhu*, Li-Xia Yang. ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties. Advanced Functional Materials, 17, 59-64 (2007). (影响因子11.805, 被引次数249)
  7. Jin Wu, Ying-Jie Zhu*, Shao-Wen Cao, Feng Chen. Hierachically Nanostructured Mesoporous Spheres of Calcium Silicate Hydrate: Surfactant-Free Sonochemical Synthesis and Drug-Delivery System with Ultrahigh Drug-Loading Capacity. Advanced Materials, 22 (6), 749-753 (2010). (影响因子 17.493)
  8. Feng Chen, Peng Huang, Ying-Jie Zhu*, Jin Wu, Chun-Lei Zhang and Da-Xiang Cui*. The Photoluminescence, Drug Delivery and Imaging Properties of Multifunctional Eu3+/Gd3+ Dual-doped Hydroxyapatite Nanorods. Biomaterials, 32, 9031-9039 (2011). (影响因子8.557,被引次数102)
  9. Qi-Li Tang, Ying-Jie Zhu*, Jin Wu, Feng Chen, Shao-Wen Cao. Calcium Phosphate Drug Nanocarriers with Ultrahigh and Adjustable Drug Loading Capacity: One-Step Synthesis, In-Situ Drug Loading and Prolonged Drug Release. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 428-434 (2011). (影响因子6.155)
  10. Zheng-Hua Liang, Ying-Jie Zhu*, Xian-Luo Hu. Beta-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. Journal of Physical Chemistry B, 108 (11), 3488-3491 (2004). (影响因子3.302, 被引次数231)
  11. Ya Jiang, Ying-Jie Zhu*. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B, 109 (10), 4361-4364 (2005). (影响因子 3.302, 被引次数154)
  12. Xian-Luo Hu, Ying-Jie Zhu*, Shi-Wei Wang. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics, 88 (2-3), 421-426 (2004). (被引次数148)
  13. Shao-Wen Cao, Ying-Jie Zhu*, Ming-Yan Ma, Liang Li, Ling Zhang. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and gamma-Fe2O3: Preparation and potential application in drug delivery. Journal of Physical Chemistry C, 112 (6), 1851-1856 (2008). (影响因子4.772, 被引次数191)
  14. Xian-Luo Hu, Ying-Jie Zhu*. Morphology control of PbWO4 nano- and microcrystals via a simple, seedless, and high-yield wet chemical route. Langmuir, 20 (4), 1521-1523 (2004). (影响因子4.457, 被引次数97)
  15. Shao-Wen Cao, Ying-Jie Zhu*. Hierarchically nanostructured (alpha-Fe2O3 hollow spheres: Preparation, growth mechanism, photocatalytic property, and application in water treatment. Journal of Physical Chemistry C, 112 (16), 6253-6257 (2008). (影响因子 4.772, 被引次数174)
  16. Wei-Wei Wang, Ying-Jie Zhu*. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorganic Chemistry Communications, 7 (9), 1003-1005 (2004). (被引次数108)
  17. Li-Xia Yang, Ying-Jie Zhu*, Hua Tong, Zhen-Hua Liang, Wei-Wei Wang. Hierarchical beta-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks. Crystal Growth & Design, 7 (12), 2716-2719 (2007). (影响因子4.891, 被引次数144)
  18. Li-Xia Yang, Ying-Jie Zhu*, Liang Li, Ling Zhang, Hua Tong, Wei-Wei Wang, Guo-Feng Cheng, Jie-Fang Zhu. A facile hydrothermal route to flower-like cobalt hydroxide and oxide. European Journal of Inorganic Chemistry, (23), 4787-4792 (2006). (被引次数95)
  19. Chao Qi, Ying-Jie Zhu*, Bing-Qiang Lu, Xin-Yu Zhao, Jing Zhao, Feng Chen, Jin Wu. ATP-Stabilized Amorphous Calcium Carbonate Nanospheres and Their Application in Protein Adsorption. Small, 10, 2047-2056 (2014). (影响因子 8.368)
  20. Jin Wu, Ying-Jie Zhu*, Feng Chen. Calcium Silicate Hydrate Ultrathin Nanosheets with Large Specific Surface Areas: Synthesis, Crystallization, Layered Self-Assembly and Applications as Excellent Adsorbents for Drug, Protein and Metal Ions. Small, 9, 2911-2925 (2013). (影响因子 8.368)
  21. Feng Chen, Peng Huang, Ying-Jie Zhu*, Jin Wu, Da-Xiang Cui*. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials, 33, 6447-6455 (2012). (影响因子8.557)

  撰写的英文专著:

  1. Ying-Jie Zhu, Jiang Chang. Microwave-assisted Synthesis and Processing of Biomaterials, 《Nanoscience and Its Applications in Biomedicine》, Springer-Verlag, 149-172 (2008).
  2. Ying-Jie Zhu. Inorganic Nanostructures for Drug Delivery, 《Biomaterials Fabricaiton and Processing Handbook》, CRC, 217-234 (2008).
  3. Ying-Jie Zhu. Microwave-assisted Rapid Preparation of One-dimensional Nanostructures, 《One-Dimensional Nanostructures, Concepts, Applications and Perspectives》, USTC, 96-126 (2009).

  已授权专利:

  1. 朱英杰, 路丙强, 陈峰;大尺寸羟基磷灰石微米管有序阵列的制备方法;专利号:ZL201410078337.4;授权公告日:2015年10月21日
  2. 朱英杰, 漆超, 陈峰;一种制备无定形碳酸钙纳米球的方法;专利号:ZL201310717089.9;授权公告日:2015年10月28日
  3. 朱英杰, 漆超, 陈峰;一种制备碳酸钙/磷酸钙复合纳米球的方法;专利号:ZL201310714584.4;授权公告日:2015年3月25日
  4. 朱英杰, 路丙强, 陈峰;高柔韧性耐高温不燃的羟基磷灰石纸及其制备方法;专利号:ZL201310687363.2;授权公告日:2015年7月15日
  5. 朱英杰, 赵新宇, 陈峰;水热法制备羟基磷灰石纳米棒和纳米线的方法;专利号:ZL201310307609.9;授权公告日:2015年5月13日
  6. 朱英杰,赵新宇,陈峰;微波辅助制备羟基磷灰石纳米结构多孔微球的方法;专利号:ZL 201310069578.8;授权公告日:2014年9月10日
  7. 朱英杰,吴进;嵌段共聚物mPEG-PLGA/无定形硅酸钙水合物复合纳米材料及其制备方法和应用;专利号:ZL201310066946.3;授权公告日:2015年3月25日
  8. 朱英杰,赵新宇,陈峰;磷酸钙/有机物复合纳米颗粒的制备方法;专利号:ZL 201310066917.7;授权公告日:2014年9月10日
  9. 朱英杰,吴进;具有超高比表面积的硅酸钙超薄纳米片及其制备方法;专利号:ZL 201210489191.3;授权公告日:2014年9月10日
  10. 朱英杰,吴进;硅酸钙水合物层状纳米结构及其制备方法;专利号:ZL 201210488069.4;授权公告日:2014年12月24日
  11. 朱英杰,漆超,陈峰;羟基磷灰石空心微球及其制备方法;专利号:ZL 201210324606.1;授权公告日:2014年6月18日
  12. 朱英杰,漆超,陈峰;微波辅助制备羟基磷灰石空心球;专利号:ZL 201210448843.9;授权公告日:2014年7月16日
  13. 朱英杰,漆超,陈峰;无定形磷酸钙纳米球及其制备方法;专利号:ZL 201210324221.5;授权公告日:2014年1月22日
  14. 朱英杰,漆超,陈峰;磷酸钙纳米结构及其制备方法;专利号:ZL 201210445916.9;授权公告日:2014年6月18日
  15. 朱英杰,赵新宇;一种纳米结构磷酸钙双载药体系及其制备方法;专利号:ZL 2012 10016291.4;授权公告日:2013年7月17日
  16. 朱英杰,马钊,陈峰;一种聚乳酸-非晶磷酸钙复合纳米纤维材料的制备方法;专利号:ZL 2010 1 0619418.2;授权公告日:2012年6月27日
  17. 朱英杰,陈峰;一种羟基磷灰石仿生结构材料及其制备方法;专利号:ZL 2010 1 0523497.7;授权公告日:2012年5月30日
  18. 朱英杰,陈峰;聚乳酸-聚乙二醇/铕掺杂的磷酸钙纳米复合材料、其改性物及两者的制备;专利号:ZL 201010512844.6;授权日:2012年10月31日
  19. 朱英杰,汤启立;一种磷酸钙纳米载药体系的制备方法;专利号:ZL 2010 1 0533214.7;授权日 2012年1月25日
  20. 朱英杰, 王可伟, 段友容, 王琪;磷酸钙纳米结构空心微球及其制备方法;专利号:ZL 200910198813.5;授权日 2013年1月16日
  21. 朱英杰,吴进;硅酸钙多级纳米结构介孔微球及其制备方法;专利号:ZL 2009 1 0196131.0;授权日 2011年8月3日
  22. 朱英杰,曹少文;三嵌段共聚物PEO-PPO-PEO/磷酸钙纳米复合材料及其制备;专利号:ZL 2009 1 0054807.2;授权日 2011年3月16日
  23. 朱英杰,王可伟,段友容,孙颖,王琪;磷酸钙/嵌段共聚物复合多孔纳米球及其制备方法;专利号:ZL 2009 1 0055356.4;授权日 2012年8月8日
  24. 朱英杰,陈峰;稀土配合物、稀土氧化物及其制备方法;专利号:ZL 200910050880.2;授权日 2013年5月29日
  25. 朱英杰,陈峰;稀土配合物、稀土氧化物及其制备方法;专利号:ZL 201110213210.5;授权日 2014年4月2日
  26. 朱英杰,汤启立,王可伟,陈峰;聚丙烯酰胺/钙磷酸盐纳米复合材料及其微波辅助液相制备方法;专利号:ZL 2009 1 0046767.7;授权日 2011年12月14日
  27. 朱英杰,仝华,刘小林;以KCdCl3纳米线为模板制备CdS或CdSe纳米管的方法;专利号 ZL 2009 1 0045907.9;授权日 2011年10月5日
  28. 朱英杰,曹少文;铁氧化物空心微球及其制备方法;专利号 ZL 2009 1 0045910.0;授权日 2011年10月5日
  29. 朱英杰,张凌;两性金属化合物纳米材料及其制备方法;专利号:ZL 2008 1 0042044.5;授权日 2011年6月1日
  30. 朱英杰,张凌;金属氧化物纳米材料;专利号:ZL 2008 1 0042324.6;授权日 2012年5月30日
  31. 朱英杰, 马明燕;生物医用纳米空心椭球及其制备方法和用途;专利号:ZL 200810034766.6;授权日 2013年6月19日
  32. 朱英杰, 曹少文;强磁性四氧化三铁纳米材料的制备方法;专利号ZL 2008 1 0036888.9;授权日 2011年4月27日
  33. 朱英杰, 曹少文;一种铁氧化物多级空心核壳材料及其制备方法;专利号ZL 2008 1 0039800.9;授权日 2011年12月14日
  34. 姚琴,朱英杰,陈立东;碲化铋纳米管的制备方法;专利号ZL200810034933.7;授权日 2010年12月8日
  35. 朱英杰,马明国;羟基磷灰石微米管及其制备方法;专利号:ZL 2007 1 0047312. 8;授权日:2012年6月27日
  36. 朱英杰, 曹少文;一种铁的氧化物纳米磁性材料及其制备方法;专利号: ZL 2007 1 0043843.X;授权日:2010. 7. 28
  37. 朱英杰,朱杰芳;聚丙烯酰胺基金属纳米复合材料的微波液相制备方法;专利号: ZL200510027905.9 (2007年5月9日授权)
  38. 朱英杰,杨丽霞;用乙酸盐水解制备氢氧化物纳米材料的方法;专利号: ZL 200610027699.6 (2008年4月30日授权)
  39. 朱英杰,仝华;半胱氨酸类生物分子辅助自组装制备铅的硫族化合物纳米管的方法;专利号: ZL 200610117148.9 (2008年4月30日授权)
  40. 朱英杰,王卫伟,胡先罗;一种用还原剂还原氧化物制备单质纳米微粉的方法;专利号: ZL 200510025830.0 (2008年7月23日授权)

  代表性研究工作:

  1. 创建了快速、节能、环境友好的微波辅助离子液体法等微波制备新方法,并将这些方法应用于多种纳米材料的快速制备及纳米结构的形貌调控

  微波加热具有快速的优势,可大大提高材料的制备效率,并节省能源。近年来,微波在化学合成和材料快速制备等研究领域显示出巨大的潜力,预期未来微波在众多领域都具有广阔的应用前景和巨大的经济效益。最近,朱英杰研究员等撰写的题目为“Microwave-assisted Preparation of Inorganic Nanostructures in Liquid Phase” 的综述论文在美国化学会权威综述性期刊《化学评论》(Chemical Reviews) 114, 6462-6555 (2014) (影响因子46.568)上发表。该论文详细综述和讨论了近年来微波制备纳米材料研究领域的主要进展,并按照溶剂和材料种类进行了详细的分类综述和讨论,对微波加热和传统加热的不同效应进行了比较,对一些热点问题尤其是存在争议的微波加热机理问题做了详细探讨,并对该研究领域未来的发展趋势和重要发展方向进行了展望。该综述论文引用了1016篇参考文献,篇幅长(94页),内容丰富,信息量大。预期该综述论文将对相关研究领域的发展起到积极的促进作用,对相关研究工作者具有重要的参考价值。该论文发表后受到了国际同行的广泛关注,发表后不久即入选美国化学会Chemical Reviews 2014年7月“Most Read Article”并排名第一;并且2014年8月连续第二次入选“Most Read Article”。

  自2003年以来,朱英杰科研团队一直致力于微波快速制备纳米材料的研究,发展了多种快速、节能、环境友好的微波制备方法并应用于多种纳米材料的快速制备及结构、形貌调控,取得了一系列创新研究结果。其中代表性研究工作包括:创建了快速、节能和环境友好的微波辅助离子液体法;建立了以固-液反应机理快速制备纳米材料的微波多元硫醇还原新方法;发展了微波辅助层状前驱物转化法用于具有非层状结构材料纳米片的快速制备;发展了有机/无机纳米复合材料的微波原位同步快速制备方法,解决了纳米粒子严重团聚和分散性差等难题,与传统加热法比较,该方法可以节省时间达到一个数量级;发展了多种纳米生物材料和磁性纳米材料的微波快速制备方法;在微波辅助纳米结构自组装等方面也开展了一系列研究工作。有关微波合成纳米材料的研究工作在国际SCI 期刊上发表论文约90篇,并申请多项发明专利。这些研究工作已在国际上受到广泛关注并产生较大影响,相关论文已被引用约2800次,其中引用超过100次的论文有6篇。有关微波辅助离子液体法快速制备纳米材料的论文发表在 Angew. Chem. Int. Ed., 43, 1410 (2004) (影响因子11.261)上,该论文受到审稿人高度评价,入选“热点论文” (Hot Paper)和“高引用论文(Highly cited paper)”,2004年发表后单篇论文已被引用429次。发表在Journal of Physical Chemistry B, 109, 4361 (2005) (影响因子3.302)上的论文入选美国化学会 2005 年 1-6 月“访问次数最多的论文 (Most-Accessed Article)”,已被引用 154 次。 发表在Journal of Physical Chemistry B, 110, 8593 (2006) 的论文入选美国化学会 2006 年 4-6 月“访问次数最多的论文”。

  2. 发明了新型高柔韧性羟基磷灰石耐火纸

  纸是人类日常工作和生活离不开的多用途产品。纸是中国古代四大发明之一,纸的发明结束了古代简牍繁复的历史,极大地促进了人类文化的传播与发展。传统纸通常是采用树木或草等植物纤维为原料并加入一些添加剂和漂白剂制造出来的。随着科学技术的发展,一次性纸成为一种廉价的商品,导致纸的消耗量及其废物大幅增加,例如在20世纪下半叶全球纸的用量大约增长了6倍,全球约20%的木材用于纸的制造,导致大规模森林资源的消耗和环境污染。

  由木材纸浆制成的传统纸含有较高比例的木质素,木质素在空气中和光照下会逐渐变黄,这就是一些书籍和报纸保存一段时间后会变黄的原因。植物纤维素也会产生一些酸性物质,这些酸性物质会使纸腐蚀降解。传统植物纤维素纸的另一个致命弱点是易燃性,书籍和纸质文件在火灾中会被完全烧毁,这也是很多世纪以来众多纸质文物损毁消失的一个主要原因。

  基于传统纸所面临的突出问题,探索基于无机材料的新型高柔韧性耐火纸就成为一个重要的研究课题。最近,朱英杰科研团队专心致力于具有可控构造的羟基磷灰石纳米材料的研究,目标是发明一种新型的具有高柔韧性及不可燃性的无机纸以期解决传统植物纤维纸所面临的难题。羟基磷灰石是一种天然矿物质,它是脊椎动物骨骼和牙齿的主要无机成份,它具有优良的生物相容性并且环境友好,本身呈现优质的白色,是制造纸的一种理想材料。但是羟基磷灰石材料如羟基磷灰石陶瓷一般脆性很高、韧性很低,因此需要解决的一个巨大挑战是如何显著提高羟基磷灰石材料的柔韧性。通过坚持不懈的研究,朱英杰科研团队发现采用羟基磷灰石超长纳米线作为纸的构建材料可以有效解决这一难题。

  另一方面,羟基磷灰石在合成过程中通常容易形成短纳米棒,而羟基磷灰石超长纳米线的制备是一个具有很大挑战性的难题。朱英杰科研团队发展了一种制备方法,以油酸钙为前驱体成功地制备出亲水性/疏水性可精确调控的羟基磷灰石超长纳米线,并以该超长纳米线作为纸的构建材料,采用简单的真空抽滤技术成功地制备出新型羟基磷灰石耐火纸。该纸具有高柔韧性,可以任意卷曲,此外它不燃烧,而且可以耐高温。这种新型耐火纸可以应用于需要长久保存的书写和印刷文件及档案等,它作为永久和安全的信息存储介质具有良好的应用前景。此外,该新型耐火纸也具有其它多种用途,例如作为从废水中有效去除有机污染物的可再生吸附剂、药物控释载体、骨缺损修复材料、医用纸、阻燃材料和耐高温材料等。相关研究工作发表在Chemistry-A European Journal, 20, 1242 (2014) (影响因子5.731)。

  可以预期,将来如果高柔韧性羟基磷灰石耐火纸能够实现大规模生产和使用,它不仅能够作为永久和安全的信息存储介质帮助长久保存书写和印刷文件及档案等重要的纸质文件,而且可以大幅度减少人类对传统植物纤维素纸的依赖,使大规模森林等宝贵的自然资源得以保全,还可以减少环境污染。所有这些都将对未来人类社会和环境产生重要而深远的影响。

  相关研究成果受到国内外的广泛关注和大量报道,例如中央电视台CCTV1、CCTV4、CCTV13、CCTV证劵资讯、新华社网络电视台、“人民日报”、“光明日报”、“新华每日电讯”、“中国科学报”、“科技日报”、“解放军报“、“工人日报”、“解放日报”、“文汇报”、“香港文汇报”、“劳动报”等都做了报道。国外如Materials Today、ChemViews Magazine、Decoded Science、The American Ceramic Society、General Knowledge Today、“新加坡联合早报”等也都予以了报道,报道的语言包括英文、日文、韩文、波兰文等多种语言。

  3. 羟基磷灰石纳米结构仿生材料

  羟基磷灰石是脊椎动物骨骼和牙齿的主要无机成份,具有优良的生物相容性,在生物医学领域具有广泛的用途。脊椎动物的牙釉质是由高度有序羟基磷灰石晶体组成的。然而,脊椎动物骨骼和牙齿在体内的生物矿化是一个非常缓慢的过程,通常需要很多年,因此模仿牙釉质和骨的生长过程是一个巨大的挑战。近年来,研究者采用有机分子、模板或衬底等辅助手段合成羟基磷灰石有序结构,但这些合成方法具有一定的局限性,例如,所得到的羟基磷灰石有序结构的尺寸较小,而且去除硬模板或衬底容易造成有序结构的损坏。由于制备上的困难,尺寸大于100微米的高度有序结构羟基磷灰石仿生材料很少有报道。

  最近,朱英杰科研团队成功地合成出大尺寸高度有序羟基磷灰石微米管阵列仿生材料,该仿生材料模仿牙齿的结构,因此在牙和骨等硬组织缺损修复领域具有良好的应用前景。最近,该研究工作发表在Chemistry-A European Journal 20, 7116-7121 (2014) (影响因子5.731),并申请了一项发明专利。

  该研究工作已经引起国际上的关注和兴趣。 Clara Piccirillo博士于2014年4月21日在Decoded Science上发表题为“Ultralong Hydroxyapatite Micro-Tubes: Biomaterial with Potential in Dentistry”的文章对朱英杰团队的研究工作进行了报道(http://www.decodedscience.com/ultralong-hydroxyapatite-micro-tubes-biomaterial-potential-dentistry/44889)。该文指出,新的微米管阵列模仿牙齿的结构,这一新发现对牙科病人来说具有重要的意义……。这种材料再现了牙釉质的结构; 正因为如此,它在牙科牙齿修复方面具有巨大的潜力......。中国科学院上海硅酸盐研究所的研究人员在该领域取得了重要的创新研究结果,他们制备了毫米级大尺寸的羟基磷灰石三维高度有序微米管阵列。这个研究小组已经具有羟基磷灰石的制备和应用的研究经验; 事实上在几个月前,他们报道了关于新型羟基磷灰石耐火纸的研究工作......。这项新技术对医疗和牙科行业可能意味着是一件大事情,对患者来说也是如此。

  2014年5月6日,David Bradley博士在Chemistry Views 上发表了题为“An “Apatite” to make you smile”的文章对朱英杰团队的研究工作做了报道(http://www.chemistryviews.org/details/ezine/6121021/An_Apatite_to_Make_You_Smile.html)。该文章指出,一种新颖的合成羟基磷灰石晶体的仿生方法可以赋予牙医和外科医生重建受损的牙齿和骨骼的能力,这要归功于正在中国开展的研究……。中国科学院上海硅酸盐研究所朱英杰领导的团队采用溶剂热法来合成羟基磷灰石晶体……。该团队利用这种溶剂热过程构建了毫米级尺寸的三维高度有序的羟基磷灰石微米管阵列……。羟基磷灰石的生物相容性使其作为植入物及假体可以被身体接受,其中软组织可以在生物分子水平与羟基磷灰石材料结合并嵌入其中……。

  “这是一项有趣的研究,”美国Wisconsin, Madison大学干细胞和整形医学中心主任William Murphy教授说。“羟基磷灰石材料的长程有序令人感到好奇,它与诸如牙釉质的生物材料具有一些几何相似性,”他补充道:“有机组分通常对天然矿物的形成具有显著的贡献,因而导致有机-无机复合体的形成。本研究中的材料是很有趣的,因为它在没有有机模板存在的情况下实现了有序”。

  2014年5月12日Wiley-VCH出版社 Materials Views (China) 以“人工合成羟基磷灰石有序阵列取得突破进展”为题对朱英杰团队的研究工作做了亮点报道(http://www.materialsviewschina.com/2014/05/ren-gong-he-cheng-qiang-ji-lin-hui-shi-you-xu-zhen-lie-qu-de-tu-po-jin-zhan/)。该文指出,这一新方法可以合成毫米级大尺寸高度有序羟基磷灰石微米管阵列,这种材料模仿了牙釉质的结构,因此对牙科病人来说具有重要的意义……。由于通过该技术制备的羟基磷灰石高度有序仿生材料具有微管结构,它可以提供空间和通道装载药物、生长因子或抗生素等客体分子,用于植入手术后的消炎、抗菌和治疗等;而且还有利于动物软组织在生物分子水平与材料紧密结合并嵌入生长进入管状结构内部。因此,这一制备技术和所制备的仿生材料在牙齿和骨硬组织缺损修复领域具有非常良好的应用前景。

  4. 建立了以含磷生物分子作为磷源合成磷酸钙纳米材料的新方法

  磷酸钙材料的合成通常是通过无机钙盐和无机磷酸盐在溶液中直接反应而获得,但由于钙离子和磷酸根离子浓度较高,在前驱体溶液中容易发生快速反应,磷酸钙的成核和生长速率较快,因而产物的形貌和尺寸难以控制。最近,朱英杰研究员科研团队利用具有良好生物相容性的含磷生物分子作为磷源,并结合微波辅助水热等方法快速合成多种磷酸钙纳米结构材料,对磷酸钙纳米结构材料的尺寸、形貌和物相进行调控,并研究了所制备多种磷酸钙纳米结构材料在生物医学领域的应用。与无机磷酸盐作为磷源相比,采用含磷生物分子作为磷源具有明显的优势:首先,磷源以磷酸基团的形式存在于含磷生物分子中,而在前驱体溶液中不含有自由的磷酸根离子,因此可以避免磷酸钙的快速成核和生长;其次,溶液中磷酸根离子的浓度由含磷生物分子的水解速率来控制,含磷生物分子一般需要一定的条件例如在水溶液中加热才能发生水解形成磷酸根离子,这些水解条件可以被用来控制含磷生物分子的水解速率从而控制产物的形貌、尺寸和结构;第三,含磷生物分子的水解是一个渐进的过程,因此可以避免磷酸钙的快速成核和生长;另外,含磷生物分子及其水解产物具有良好的生物相容性,对磷酸钙纳米结构的成核和生长具有调控作用。

  朱英杰研究团队在含磷生物分子作为磷源合成磷酸钙纳米结构材料方面开展了一系列研究工作。例如,他们采用三磷酸腺苷(ATP)作为磷源,利用ATP在微波加热条件下水解产生的磷酸根离子与溶液中的钙离子反应合成磷酸钙纳米结构材料;并且对产物的形貌和物相可以进行调控。在较低温度下,ATP水解产生磷酸根离子提供磷源,未水解的ATP作为一种高效稳定剂阻止非晶磷酸钙向羟基磷灰石的转变,从而得到一种具有高稳定性的非晶磷酸钙多孔纳米球,如上图所示;但在较高微波加热温度下得到羟基磷灰石纳米线。相关研究结果发表在Chemistry-A European Journal 19, 981 (2013) (影响因子5.731); Materials Letters 85, 71 (2012)。还进一步研究了ATP对非晶碳酸钙稳定性的影响,通过ATP在室温下合成了具有高稳定性的非晶碳酸钙纳米球,具有良好的生物相容性,对牛血红蛋白具有高吸附量,并显示出良好的pH响应释放性能;相关研究结果发表在Small 10, 2047 (2014) (影响因子8.368)。采用ATP还合成了载锌非晶磷酸钙介孔微球(Microporous and Mesoporous Materials 180, 79 (2013) (影响因子3.453))。 该研究团队还采用其它多种含磷生物分子例如1,6-二磷酸果糖(Chemistry-An Asian Journal 8, 88 (2013) (影响因子4.587))、磷酸肌酸(Chemistry-A European Journal 19, 5332 (2013) (影响因子5.731), CrystEngComm 15, 4527 (2013) (影响因子4.034))、胞苷-5’-磷酸(Materials Letters 124, 208 (2014))、磷酸吡哆醛(Chemistry-An Asian Journal 8, 1313 (2013) (影响因子4.587))和核黄素磷酸钠(CrystEngComm 15, 7926 (2013) (影响因子4.034))合成了多种磷酸钙纳米结构材料。所制备的磷酸钙纳米结构材料具有良好的生物相容性、高药物/蛋白装载量和优良的缓释和pH响应释放性能,在生物医学领域具有良好的应用前景。

  2014年6月3日Wiley-VCH 出版社Materials Views 以“含磷生物分子:合成磷酸钙纳米结构材料的新型绿色磷源”作为题目对朱英杰研究员对的研究工作做了亮点报道。

研究方向:
职称:
职务:
社会任职:
获奖及荣誉:
代表论著:
承担科研项目情况:
个人主页:
版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899