联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 OA系统
/> />
姓 名:
李驰麟
性    别:
专家类别:
研究员
学 历:
博士研究生
电 话:
021-52411030
传 真:
52413903
电子邮件:
chilinli@mail.sic.ac.cn
个人主页:
邮政编码:
200050
通讯地址:
上海市定西路1295号

简历:

李驰麟,研究员,博士生导师,“轻金属基电池体系和材料课题组”组长,入选上海市高层次人才计划(2014)、中科院杰出人才计划(2013)2003年毕业于华东理工大学化学工程与工艺专业,获工学学士;2008毕业于复旦大学物理化学专业, 获理学博士;同年进入德国马普固体研究所从事电池材料和固态离子学方面的研究;2013年加入上海硅酸盐研究所工作。在氟基电池、锂/镁金属电池、固态电池、新型电极和电解质材料的结构合成设计、电化学机制纳米离子学等方面作出系列创新成果。受邀在国际固态离子学大会、国际氟化学大会等国内外会议上作主题和邀请报告40余次。发表期刊论文100余篇,包括通讯作者的Nat. Commun.Sci. Bull.J. Am. Chem. Soc.Angew. Chem. (2)Adv. Mater. (2)Energy Environ. Sci. (2)ACS Energy Lett.ACS Nano (10)Adv. Funct. Mater. (9)Energy Storage Mater. (8)Adv. Energy Mater.Nano Lett.npj Comput. Mater.Chem. Mater. (2)J. Mater. Chem. A (7)SmallACS Appl. Mater. Interfaces (10)J. Power Sources (5) 。受邀在J. Energy Chem.、硅酸盐学报、科学通报、储能科学与技术的专刊或专栏撰写论文。授权PCT国际发明专利1项,授权中国发明专利9项。担任中国硅酸盐学会青年工作委员会委员,Sci.Rep.编委、无机材料学报编委和Chin.Chem.Lett.青年编委。获第十三届中国硅酸盐学会青年科技奖(2019)。

研究方向(新型电池体系和材料):

1)氟基电池、锂/镁金属电池、固态电池

2)新型电极和电解质材料的结构合成设计

3)电化学机制和纳米离子学

 

联系方式:

高性能陶瓷和超微结构国家重点实验室

中国科学院上海硅酸盐研究所

上海市嘉定区和硕路585

E-mailchilinli@mail.sic.ac.cn

 

代表性论文:

[86] J. L. Hu, K. Y. Chen, Z. G. Yao, and C. L. Li*. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Science Bulletin, 66, 694-707, 2021.

[85] M. S. Huang, Z. G. Yao, Q. F. Yang, and C. L. Li*. Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Li-Metal Batteries. Angew. Chem. Int. Ed., 10.1002/anie.202102552, 2021.

[84] Q. F. Yang, J. L. Hu, J. W. Meng, and C. L. Li*. C-F-rich oil drop as non-expendable fluid interface modifier with low surface energy to stabilize Li metal anode. Energy Environ. Sci., DOI: 10.1039/D0EE03952G, 2021.

[83] Q. P. Wu, Y. J. Zheng, X. Guan, J. Xu, F. H. Cao*, and C. L. Li*, Dynamical SEI Reiforced by Open-Archiecture MOF Film with Stereoscopic Lithiophilic Sites for High-Performance Lithium-Metal Batteries. Adv. Funct. Mater, 2101034. 2021.

[82] K. Y. Wei, Y. Zhao, K. Y. Chen, K. Sun, T. Wu, Z. H. Dong, Y. H. Cui*, C. Zeng, and C. L. Li*, Low-Overpotential LiF Splitting in Lithiated Fluoride Conversion Cathode Catalyzed by Spinel Oxide. Adv. Funct. Mater., 31, 2009133, 2021.

[81] J. W. Meng, and C. L. Li*, Planting CuGa2 Seeds Assisted with Liquid Metal for Selective Wrapping Deposition of Lithium. Energy Storage Mater. 37, 466-475, 2021.

[80] X. X. Wu, Y. J. Zheng, W. B. Li, Y. Y. Liu, Y. Zhang, Y. J. Li, and C. L. Li*, Solid Electrolytes Reinforced by Infinite Coordination Polymer Nano-Network for Dendrite-free Lithium Metal Batteries. Energy Storage Mater., 2021.

[79] Z. G. Yao, Y. F. Yu, Q. P. Wu, M. N. Cui, X. J. Zhou, J. J. Liu*, and C. L. Li*, Maximizing Magnesiation Capacity of Nanowire Cluster Oxides by Conductive Macromolecule Pillaring and Multication Interacalation. Small, 2102168, 2021.

[78] K. Y. Chen, W. J. Qiu, Q. P. Wu, X. J. Zhou, J. J. Liu, and C. L. Li*, Tight bonding and high-efficiency utilization of S-S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries. J. Mater. Chem. A, 9, 6160-6171, 2021.

[77] Q. P. Wu, Z. G. Yao, A. C. Du, H. Wu, M. S. Huang, J. Xu, F. H. Cao*, and C. L. Li*, Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries. J. Mater. Chem. A, 9, 5606-5618, 2021.

[76] X. X. Wu, K. Y. Chen, Z. G. Yao, J. L. Hu, M. S. Huang, J. W. Meng, S. P. Ma, T. Wu, Y. H. Cui, and C. L. Li*, Metal Organic Framework Reinforced Polymer Electrolyte with High Cation Transference Number to Enable Dendrite-Free Solid State Li Metal Conversion Batteries. J. Power Sources, doi.org/10.1016/j.jpowsour.2021.229946, 2021.

[75] K. X. Huang, Z. G. Yao, K. Sun, K. Y. Chen, J. L. Hu, D. G. Yin*, and C. L. Li*. Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. J. Power Sources, 482, 228904, 2021.

[74] Y. J. Li, K. Guo*, J. T. Zhao, and C. L. Li*. Progresses on anode interface modification of lithium metal batteries: Benefiting from functional additives and conformal coatings (in Chinese). Chin. Sci. Bull., doi: 10.1360/TB-2020-1163, 2021.

[73] J. W. Meng, Y. Zhang, X. J. Zhou, M. Lei, and C. L. Li*. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat. Commun., 11, 3716, 2020.

[72] R. R. Li, H. J. Peng, Q. P. Wu, X. J. Zhou, J. He, H. J. Shen, M. H. Yang,* and C. L. Li*. Sandwich-like catalyst-carbon-catalyst trilayer structure as compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem. Int. Ed., 59, 12129-12138, 2020.

[71] Z. G. Yao, Q. P. Wu, K. Y. Chen, J. J. Liu*, and C. L. Li*. Shallow-Layer Pillaring of Conductive Polymer in Monolithic Grains to Drive Superior Zinc Storage via Cascading Effect. Energy Environ. Sci., 13, 3149-3163, 2020.

[70] Y. Zhang, J. W. Meng, K. Y. Chen, H. Wu, J. L. Hu, and C. L. Li*. Garnet based solid-state Li-fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett., 5, 1167-1176, 2020.

[69] Q. F. Yang, M. N. Cui, J. L. Hu, F. L. Chu, Y. J. Zheng, J. J. Liu, and C. L. Li*. Ultrathin Defective C-N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. ACS Nano, 14, 1866-1878, 2020.

[68] Q. P. Wu, Z. G. Yao, X. J. Zhou, J. Xu,* F. H. Cao, and C. L. Li*. Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries. ACS Nano, 14, 3365-3377, 2020.

[67] J. L. Hu, Z. G. Yao, K. Y. Chen, and C. L. Li*. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater., 28, 37-46, 2020.

[66] S. S. Fan, M. Lei, H. Wu, J. L. Hu, C. L. Yin, T. X. Liang*, and C. L. Li*. A Na-rich fluorinated sulfate anti-perovskite with dual doping as solid electrolyte for Na metal solid state batteries. Energy Storage Mater., 31, 87-94, 2020.

[65] X. J. Zhou, J. Tian, Q. P. Wu, J. L. Hu, and C. L. Li*. N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Mater., 24, 644-654, 2020.

[64] Y. Zhang, J. W. Meng, K. Y. Chen, Q. P. Wu, X. X. Wu, and C. L. Li*. Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li-FeF3 Conversion Batteries. ACS Appl. Mater. Interfaces, 12, 33729-33739, 2020.

[63] M. S. Huang, Z. G. Yao, Q. P. Wu, Y. J. Zheng, J. J. Liu, and C. L. Li*. Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li–Metal Batteries. ACS Appl. Mater. Interfaces, 12, 46132-46145, 2020.

[62] X. W. Zhang, Q. P. Wu, X. Guan, F. H. Cao, C. L. Li*, and J. Xu*. Lithium dendrite-free and fast-charging for high voltage nickel-rich lithium metal batteries enabled by bifunctional sulfone-containing electrolyte additives. J. Power Sources, 452, 22783, 2020.

[61] W. L. Liu, K. X. Huang, X. J. Zhou, and C. L. Li*. Kinetics Activated Magnesium Metal Batteries Based on Conversion Reaction (in Chinese). J Chin. Ceram. Soc., 48, 978-989, 2020.

[60] Y. F. Yu, Y. P. Gu, and C. L. Li*. Progress on fluoride ion shuttle batteries (in Chinese). Energy Storage Science and Technology, 9, 217-238, 2020.

[59] J. W. Meng, F. L. Chu, J. L. Hu, and C. L. Li*. Liquid Polydimethylsiloxane Grafting to Enable DendriteFree Li Plating for Highly Reversible LiMetal Batteries. Adv. Funct. Mater., 29, 1902220, 2019.

[58]Q. P. Wu, X. J. Zhou, J. Xu*, F. H. Cao, and C. L. Li*. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano, 13, 9520-9532, 2019.

[57] R. R. Li, X. J. Zhou, H. J. Shen, M. H. Yang*, and C. L. Li*. Conductive Holey MoO2-Mo3N2 Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High Loading Li-S Batteries. ACS Nano, 13, 10049-10061, 2019.

[56] Yu Zhao, K. Y. Wei, H. L. Wu, S. P. Ma, J. Li, Y. X. Cui, Z. H. Dong, Y. H. Cui*, and C. L. Li*. LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode. ACS Nano, 13, 2490-2500, 2019.

[55] J. Tian, X. J. Zhou, Q. P. Wu, and C. L. Li*. Li-salt mediated Mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring. Energy Storage Mater., 22, 218-227, 2019.

[54] H. Wu, Z. G. Yao, Q. P. Wu, S. S. Fan, C. L. Yin*, and C. L. Li*. Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A, 7, 22257-22264, 2019.

[53] W. J. Qiu, Z. S. Li, K. Y. Chen, C. L. Li*, J. J. Liu*, and W. Q. Zhang. Stabilizing Low-coordinated O-ions to Operate Cationic and Anionic Redox Chemistry of Li-ion Battery Materials. ACS Appl. Mater. Interfaces, 11, 37768-37778, 2019.

[52] C. L. Wu, J. L. Hu, Z. G. Yao, D. G. Yin*, and C. L. Li*. Highly Reversible Conversion Anodes Composed of Ultra-Large Monolithic Grains with Seamless Intragranular Binder and Wiring Network. ACS Appl. Mater. Interfaces, 11, 23280-23290, 2019.

[51] C. L. Wu, J. L. Hu, J. Tian, F. L. Chu, Z. G. Yao, Y. J. Zheng, D. G. Yin*, and C. L. Li*. Stacking of Tailored Chalcogenide Nanosheets around MoO2-C Conductive Stakes Modulated by Hybrid POMìMOF Precursor Template: Composite Conversion-Insertion Cathodes for Rechargeable Mg-Li Dual-Salt Batteries. ACS Appl. Mater. Interfaces, 11, 5966-5977, 2019.

[50] F. L. Chu, J. L. Hu, C. L. Wu, Z. G. Yao, J. Tian, Z. Li*, and C. L. Li*. Metal-Organic Frameworks as Electrolyte Additives to Enable Ultrastable PlatingStripping of Li Anode with Dendrite Inhibition. ACS Appl. Mater. Interfaces, 11, 3869-3879, 2019.

[49] T. C. Liu, J. L. Hu, C. L. Li*, and Y. Wang*. Unusual Conformal Li Plating on Alloyable Nanofiber Frameworks to Enable Dendrite Suppression of Li Metal Anode. ACS Appl. Energy Mater., 2, 4379-4388, 2019.

[48] H. Wu, Q. P. Wu, F. L. Chu, J. L. Hu, Y. H. Cui*, C. L. Yin*, and C. L. Li*. Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. J. Power Sources, 419, 72-81, 2019.

[47] H. L. Wu, J. L. Wang, Y. Zhao, X. Q. Zhang, L. Xu, H. Liu, Y. X. Cui, Y. H. Cui*, and C. L. Li*. Branched cellulose reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustainable Energy Fuels, 3, 2642-2656, 2019.

[46] Q. P. Wu, X. J. Zhou, J. Xu, F. H. Cao*, and C. L. Li*. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries. J. Energy Chem., 38, 94-113, 2019.

[45] X. J. Zhou, J. Tian, J. L. Hu, and C. L. Li*. High Rate Magnesium-Sulfur Battery with Improved Cyclability Based on Metal-Organic Framework Derivative Carbon Host. Adv. Mater., 30, 1704166, 2018.

[44] K. Y. Chen, Y. Zhang, and C. L. Li*. High-Rate Nanostructured Pyrite Cathodes Enabled by Fluorinated Surface and Compact Grain Stacking via Sulfuration of Ionic Liquid Coated Fluorides. ACS Nano, 12, 12444-12455, 2018.

[43] J. Tian, D. P. Cao, X. J. Zhou, J. L. Hu, M. S. Huang, and C. L. Li*, High-Capacity Mg–Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. ACS Nano, 12, 3424-3435, 2018.

[42] Q. F. Yang, and C. L. Li*. Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Mater., 14, 100-117, 2018.

[41] D. P. Cao, Z. G. Yao, J. J. Liu, J. C. Zhang*, and C. L. Li*. H-Nb2O5 Wired by Tetragonal Tungsten Bronze Related Domains as High-Rate Anode for Li-ion Batteries. Energy Storage Mater., 11, 152-160, 2018.

[40] C. L. Li*, K. Y. Chen, X. J. Zhou, and J. Maier. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Comput. Mater., 4, 22, doi:10.1038/s41524-018-0079-6, 2018.

[39] J. L. Hu, K. Y. Chen, and C. L. Li*. Nanostructured Li-rich Fluoride Coated by Ionic Liquid as High Ion-conductivity Solid Electrolyte Additive to Suppress Dendrite Growth at Li Metal Anode. ACS Appl. Mater. Interfaces, 10, 34322-34331, 2018.

[38] F. L. Chu, J. L. Hu, J. Tian, X. J. Zhou, Z. Li*, and C. L. Li*. In-Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries. ACS Appl. Mater. Interfaces, 10, 12678-12689, 2018.

[37] P. Y. Wang, J. Tian, J. L. Hu, X. J. Zhou, and C. L. Li*. Supernormal Conversion Anode Consisting of High-Density MoS2 Bubbles Wrapped in Carbon Thin-Layer Network by Self-Sulfuration of Polyoxometalate-Based Complex. ACS Nano, 11, 7390-7400, 2017.

[36] D. P. Cao, C. L. Yin, D. R. Shi, Z. W. Fu, J. C. Zhang*, and C. L. Li*. Cubic Perovskite Fluoride as Open Framework Cathode for Na-Ion Batteries. Adv. Funct. Mater., 27, 1701130, 2017.

[35] J. L. Hu, J. Tian, and C. L. Li*. Nanostructured Carbon Nitride Polymer Reinforced Electrolyte to Enable Dendrite-Suppressed Li Metal Batteries. ACS Appl. Mater. Interfaces, 9, 11615-11625, 2017.

[34] D. P. Cao, C. L. Yin, J. C. Zhang*, and C. L. Li*. Bronze and pyrochlore type iron fluorides as cathode materials for Li/Na batteries (in Chinese). Chin. Sci. Bull., 62, 897-907, 2017.

[33] J. J. Xie, Y. Zhang, Y. L. Han, and C. L. Li*. High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano, 10, 5304-5313, 2016.

[32] Y. L. Han, M. H. Yang, Y. Zhang, J. J. Xie, D. G. Yin*, and C. L. Li*.Tetragonal Tungsten Bronze Framework as Potential Anode for Na-Ion Batteries. Chem. Mater., 28, 3139-3147, 2016.

[31] Y. L. Han, J. L. Hu, C. L. Yin, Y. Zhang, J. J. Xie, D. G. Yin, and C. L. Li*. Iron-Based Fluorides of Tetragonal Tungsten Bronze Structure as Potential Cathodes for Na-Ion Batteries. J. Mater. Chem. A, 4, 7382-7389, 2016.

[30] J. L. Hu, Y. Zhang, D. P. Cao, and C. L. Li*. Dehydrating Bronze Iron Fluoride as High Capacity Conversion Cathode for Lithium Batteries. J. Mater. Chem. A, 4, 16166-16174, 2016.

[29] P. L. Lou, C. L. Li*, Z. H. Cui, and X. X. Guo*. Job-Sharing Cathode Design for Li-O2 Batteries with High Energy Efficiency Enabled by In-Situ Ionic Liquid Bonding to Cover Carbon Surface Defects. J. Mater. Chem. A, 4, 241-249, 2016.

[28] Y. Zhang, J. J. Xie, Y. L. Han, and C. L. Li*. Dual-Salt Mg-Based Batteries with Conversion Cathodes. Adv. Funct. Mater., 25, 7300-7308, 2015.

[27] J. J. Xie, C. L. Li*, Z. H. Cui, and X. X. Guo. Transition-Metal-Free Magnesium-Based Batteries Activated by Anionic Insertion into Fluorinated Graphene Nanosheets. Adv. Funct. Mater., 25, 6519-6526, 2015.

[26] Z. H. Cui#, C. L. Li#,*, P. F. Yu, M. H. Yang*, X. X. Guo*, and C. L. Yin. Reaction Pathway and Wiring Network Dependent Li/Na Storage of Micro-Sized Conversion Anode with Mesoporosity and Metallic Conductivity. J. Mater. Chem. A, 3, 509-514, 2015.

[25] F. Qu, C. L. Li*, Z. M. Wang*, Y. R. Wen, G. Richter, and H. P. Strunk. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries. Sci. Rep., 5, 10381, 2015.

[24] F. Qu, C. L. Li*, Z. M. Wang, H. P. Strunk, and J. Maier. Metal-Induced Crystallization of Highly Corrugated Silicon Thick Films as Potential Anodes for Li-Ion Batteries. ACS Appl. Mater. Interfaces, 6, 8782-8788, 2014.

[23] P. F. Yu, C. L. Li*, and X. X. Guo*. Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films. J. Phys. Chem. C, 118, 10616-10624, 2014.

[22] N. Zhao, C. L. Li*, and X. X. Guo*. Long-Life Na-O2 Batteries with High Energy Efficiency Enabled by Electrochemically Splitting NaO2 at Low Overpotential. Phys. Chem. Chem. Phys.,16, 15646-15652, 2014.

[21] Y. Q. Li, Z. Wang, C. L. Li*, Y. Cao, and X. X. Guo*. Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. J. Power Sources, 248, 642-646, 2014.

[20] C. L. Li*, C. L. Yin, L. Gu, R. E. Dinnebier, X. K. Mu, P. A. van Aken, and J. Maier. A FeF3?0.5H2O Polytype: Microporous Framework Compound with Intersecting Tunnels for Li and Na Batteries. J. Am. Chem. Soc., 135, 11425-11428, 2013.

[19] C. L. Li*, X. K. Mu, P. A. van Aken, and J. Maier. A Large-Capacity Cathode for Lithium Batteries Consisting of Porous Microspheres of Highly Amorphized Iron Fluoride Densified from Its Open Parent Phase. Adv. Energy Mater., 3, 113-119, 2013.

[18] C. L. Li*, C. L. Yin, X. K. Mu, and J. Maier. Top-Down Synthesis of Open Framework Fluoride for Lithium and Sodium Batteries. Chem. Mater., 25, 962-969, 2013.

[17] C. L. Li*, L. Gu, X. X. Guo, D. Samuelis, K. Tang, and J. Maier*. Charge Carrier Accumulation in Lithium Fluoride Thin Films Due to Li-Ion Absorption by Titania (100) Subsurface. Nano Lett., 12, 1241-1246, 2012.

[16] C. L. Li*, L. Gu, and J. Maier. Enhancement of Li Conductivity in LiF by Introducing Glass-Crystal Interfaces. Adv. Funct. Mater., 22, 1145-1149, 2012.

[15] C. L. Li*, and J. Maier. Ionic space charge effects in lithium fluoride thin films. Solid State Ionics, 225, 408-411, 2012.

[14] C. L. Li*, L. Gu, J. W. Tong, and J. Maier*. Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles. ACS Nano, 5, 2930-2938, 2011.

[13] C. L. Li*, L. Gu*, J. W. Tong, S. Tsukimoto, and J. Maier. A Mesoporous Iron-Based Fluoride Cathode of Tunnel Structure for Rechargeable Lithium Batteries. Adv. Funct. Mater., 21, 1391-1397, 2011.

[12] C. L. Li*, X. X. Guo, L. Gu, D. Samuelis, and J. Maier*. Ionic Space-Charge Depletion in Lithium Fluoride Thin Films on Sapphire (0001) Substrates. Adv. Funct. Mater., 21, 2901-2905, 2011.

[11] C. L. Li*, L. Gu*, S. Tsukimoto, P. A. van Aken, and J. Maier. Low Temperature Synthesis of Nanostructured Iron-Based Fluoride Cathode by Ionic Liquid for Lithium Batteries. Adv. Mater., 22, 3650-3654, 2010.

[10] C. L. Li, K. Sun, L. Yu, and Z. W. Fu*. Electrochemical Reaction of Lithium with Orthorhombic Bismuth Tungstate Thin Films Fabricated by Radio-Frequency Sputtering. Electrochim. Acta, 55, 6-12, 2009.

[9] C. L. Li, Q. Sun, G. Y. Jiang, and Z. W. Fu*. Electrochemistry and Morphology Evolution of Carbon Micro-Net Films for Rechargeable Lithium Ion Batteries. J. Phys. Chem. C, 112, 13782-13788, 2008.

[8] C. L. Li and Z. W. Fu*. Nano-sized Copper Tungstate Thin Films as Positive Electrodes for Rechargeable Li Batteries. Electrochim. Acta, 53, 4293-4301, 2008.

[7] C. L. Li and Z. W. Fu*. Electrochemical Characterization of Amorphous LiFe(WO4)2 Thin Films as Positive Electrodes for Rechargeable Lithium Batteries. Electrochim. Acta, 53, 6434-6443, 2008.

[6] C. L. Li and Z. W. Fu*. All-Solid-State Rechargeable Thin Film Lithium Batteries with LixMn2O4 and LixMn2O4-0.5ZrO2 Cathodes. Electrochim. Acta, 52, 6155-6164, 2007.

[5] C. L. Li and Z. W. Fu*. Kinetics of Li+ Ion Diffusion into FePO4 and FePON Thin Films Characterized by AC Impedance Spectroscopy. J. Electrochem. Soc., 154 (8), A784-A791, 2007.

[4] C. L. Li, B. Zhang, and Z. W. Fu*. Physical and Electrochemical Characterization of Thin Films of Iron Phosphate and Nitrided Iron Phosphate for All-Solid-State Batteries. J. Electrochem. Soc., 153 (9), E160-E165, 2006.

[3] C. L. Li, B. Zhang, and Z. W. Fu*. Physical and Electrochemical Characterization of Amorphous Lithium Lanthanum Titanate Solid Electrolyte Thin-Film Fabricated by E-Beam Evaporation. Thin Solid Films, 515, 1886-1892, 2006.

[2] C. L. Li, W. Y. Liu, and Z. W. Fu*. Physical and Electrochemical Characterization of LiCo0.8M0.2O2 (M= Ni, Zr) Cathode Films for All-Solid-State Rechargeable Thin-film Lithium Batteries. Chinese Journal of Chemical Physics, 19 (6), 493-498, 2006.

[1] 李驰麟,傅正文*,舒兴胜,任兆杏.电子回旋共振等离子体辅助溅射沉积锂磷氧氮薄膜. 无机材料学报, 21(1), 193-198, 2006.

研究方向:
职称:
职务:
社会任职:
获奖及荣誉:
代表论著:
承担科研项目情况:
个人主页:
版权所有 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899